Phân tích dữ liệu là một quá trình quan trọng trong việc ra quyết định dựa trên dữ liệu. Cùng UniTrain tìm hiểu chi tiết các bước của quá trình này qua bài viết bên dưới.
1. Xác định mục tiêu và bố cục
Trước tiên, cần xác định rõ mục tiêu và đối tượng sử dụng báo cáo, các chỉ tiêu và mức độ chi tiết của báo cáo. Việc xác định mục tiêu giúp định hướng quá trình phân tích và đảm bảo rằng mọi nỗ lực đều tập trung vào việc đạt được kết quả mong muốn.
2. Thu thập dữ liệu
Bước tiếp theo là xác định nguồn dữ liệu, cách thu thập và cập nhật dữ liệu mới từ nhiều nguồn khác nhau. Dữ liệu có thể được thu thập từ nhiều nguồn như cơ sở dữ liệu, tệp tin CSV, API, hoặc thậm chí thông qua khảo sát và phỏng vấn. Quan trọng là đảm bảo dữ liệu thu thập được đủ phong phú, chính xác và cập nhật thời gian thực (real-time) để phục vụ cho mục tiêu phân tích.
3. Làm sạch và chuẩn bị dữ liệu
Dữ liệu thô thường chứa nhiều lỗi và thiếu thông tin. Do đó, cần phải làm sạch và chuẩn hóa dữ liệu trước khi phân tích. Quá trình này bao gồm việc loại bỏ các dữ liệu trùng lặp và không liên quan, xử lý các dữ liệu thiếu và chuẩn hóa dữ liệu. Một dữ liệu sạch sẽ và nhất quán là nền tảng cho việc tự động hóa và phân tích chính xác.
4. Phân tích dữ liệu
Bước này kết hợp giữa kỹ thuật sử dụng các công cụ như: Power Pivot, Pivot Table, SQL, Python… và các thuật toán, mô hình dự báo để phân tích dữ liệu theo nhiều tầng: Descriptive, Diagnostic, Predictive, Prescriptive.
5. Trực quan hóa và kể chuyện (data storytelling) bằng dữ liệu
Theo nghiên cứu thì bộ não con người có thể xử lý thông tin và ra quyết định dựa trên hình ảnh nhanh hơn dựa trên con số và chữ khoảng 60.000 lần. Vì vậy, việc lựa chọn biểu đồ phù hợp, bố cục các biểu đồ một cách trực quan, kể chuyện với dữ liệu và làm nổi bật những thông tin quan trọng sẽ giúp nhà người đọc báo cáo dễ dàng tìm kiếm insight và ra quyết định kịp thời, chính xác.
Các công cụ trực quan hóa phổ biến như Dashboard in Excel, Power BI, Python… thường được sử dụng trong bước này.
6. Đưa ra kết luận và đề xuất
Dựa trên kết quả phân tích, cần đưa ra các kết luận và đề xuất hành động. Điều này có thể bao gồm việc đề xuất các biện pháp cải thiện quy trình, tối ưu hóa chiến lược kinh doanh, hoặc xác định các cơ hội mới. Kết luận và đề xuất nên được dựa trên dữ liệu và có tính khả thi cao.
7. Theo dõi và đánh giá
Cuối cùng, cần theo dõi và đánh giá hiệu quả của các đề xuất đã thực hiện. Điều này bao gồm việc so sánh kết quả thực tế với kế hoạch và điều chỉnh mô hình nếu cần thiết. Quá trình theo dõi và đánh giá liên tục giúp cải thiện độ chính xác của phân tích và đảm bảo rằng các quyết định dựa trên dữ liệu luôn được cập nhật và hiệu quả.
Quá trình phân tích dữ liệu là một chuỗi các bước từ việc xác định mục tiêu đến theo dõi và đánh giá kết quả. Mỗi bước đều đóng vai trò quan trọng trong việc đảm bảo rằng các quyết định dựa trên dữ liệu được thực hiện một cách chính xác và hiệu quả.
Xem thêm:
Thống kê trong Phân tích Dữ liệu