DỮ LIỆU ĐÓNG MỘT VAI TRÒ QUAN TRỌNG.
Trong khi đó, các ứng dụng và dự án ngày nay có thể lớn và phức tạp, thường liên quan đến việc sử dụng các kỹ năng và kiến thức từ nhiều cá nhân. Mỗi người mang một tài năng và chuyên môn riêng, chia sẻ nỗ lực làm việc cùng nhau và phối hợp các nhiệm vụ và trách nhiệm để nhìn thấy một dự án xuyên suốt từ ý tưởng đến sản xuất.
1. Nhà phân tích dữ liệu – Data analyst
Một nhà phân tích dữ liệu cho phép các doanh nghiệp tối đa hóa giá trị tài sản dữ liệu của họ thông qua các công cụ trực quan hóa và báo cáo như Microsoft Power BI. Các nhà phân tích dữ liệu chịu trách nhiệm lập hồ sơ, làm sạch và chuyển đổi dữ liệu.
Trách nhiệm của họ cũng bao gồm thiết kế và xây dựng các mô hình dữ liệu có thể mở rộng và hiệu quả, đồng thời kích hoạt và triển khai các khả năng phân tích nâng cao vào các báo cáo để phân tích. Một nhà phân tích dữ liệu làm việc với các bên liên quan thích hợp để xác định dữ liệu và yêu cầu báo cáo thích hợp và cần thiết, sau đó họ có nhiệm vụ biến dữ liệu thô thành những thông tin chi tiết có liên quan và có ý nghĩa.
Một nhà phân tích dữ liệu cũng chịu trách nhiệm quản lý nội dung Power BI, bao gồm báo cáo, DASHBOARD, không gian làm việc và các tập dữ liệu cơ bản được sử dụng trong báo cáo. Họ có nhiệm vụ triển khai và cấu hình các quy trình bảo mật phù hợp, cùng với các yêu cầu của các bên liên quan, để đảm bảo lưu giữ an toàn tất cả các tài sản Power BI và dữ liệu của chúng.
Các nhà phân tích dữ liệu làm việc với các kỹ sư dữ liệu để xác định và định vị các nguồn dữ liệu thích hợp đáp ứng các yêu cầu của các bên liên quan. Ngoài ra, nhà phân tích dữ liệu làm việc với kỹ sư dữ liệu và quản trị viên cơ sở dữ liệu để đảm bảo rằng nhà phân tích có quyền truy cập thích hợp vào các nguồn dữ liệu cần thiết. Nhà phân tích dữ liệu cũng làm việc với kỹ sư dữ liệu để xác định các quy trình mới hoặc cải tiến các quy trình hiện có để thu thập dữ liệu để phân tích.
2. Kỹ sư dữ liệu – Data engineer
Kỹ sư dữ liệu cung cấp và thiết lập các công nghệ nền tảng dữ liệu tại chỗ và trên đám mây. Chúng quản lý và bảo mật luồng dữ liệu có cấu trúc và phi cấu trúc từ nhiều nguồn. Nền tảng dữ liệu mà họ sử dụng có thể bao gồm cơ sở dữ liệu quan hệ, cơ sở dữ liệu không quan hệ, luồng dữ liệu và kho lưu trữ tệp. Các kỹ sư dữ liệu cũng đảm bảo rằng các dịch vụ dữ liệu tích hợp một cách an toàn và liền mạch giữa các dịch vụ dữ liệu.
Các trách nhiệm chính của kỹ sư dữ liệu bao gồm: sử dụng các dịch vụ và công cụ dữ liệu đám mây và tại chỗ để nhập, xuất và chuyển đổi dữ liệu từ nhiều nguồn. Kỹ sư dữ liệu cộng tác với các bên liên quan trong kinh doanh để xác định và đáp ứng các yêu cầu về dữ liệu. Họ thiết kế và thực hiện các giải pháp.
Mặc dù một số sự liên kết có thể tồn tại trong các nhiệm vụ và trách nhiệm của kỹ sư dữ liệu và quản trị viên cơ sở dữ liệu, phạm vi công việc của kỹ sư dữ liệu còn vượt xa việc chăm sóc cơ sở dữ liệu và máy chủ nơi nó được lưu trữ và có thể không bao gồm việc quản lý dữ liệu hoạt động tổng thể.
Một kỹ sư dữ liệu bổ sung giá trị to lớn cho các dự án khoa học dữ liệu và trí tuệ kinh doanh. Khi kỹ sư dữ liệu tập hợp dữ liệu lại với nhau, thường được mô tả là dữ liệu lộn xộn, các dự án sẽ di chuyển nhanh hơn vì các nhà khoa học dữ liệu có thể tập trung vào các lĩnh vực công việc của riêng họ.
Là một nhà phân tích dữ liệu, bạn sẽ hợp tác chặt chẽ với một kỹ sư dữ liệu để đảm bảo rằng bạn có thể truy cập nhiều nguồn dữ liệu có cấu trúc và không có cấu trúc vì chúng sẽ hỗ trợ bạn trong việc tối ưu hóa các mô hình dữ liệu, thường được cung cấp từ kho dữ liệu hiện đại hoặc hồ dữ liệu.
Cả quản trị viên cơ sở dữ liệu và chuyên gia kinh doanh đều có thể chuyển sang vai trò kỹ sư dữ liệu; họ cần tìm hiểu các công cụ và công nghệ được sử dụng để xử lý một lượng lớn dữ liệu.
3. Nhà khoa học dữ liệu – Data scientist
Các nhà khoa học dữ liệu thực hiện phân tích nâng cao để trích xuất giá trị từ dữ liệu. Công việc của họ có thể thay đổi từ phân tích mô tả đến phân tích dự đoán. Phân tích mô tả đánh giá dữ liệu thông qua một quá trình được gọi là phân tích dữ liệu khám phá (EDA). Phân tích dự đoán được sử dụng trong học máy để áp dụng các kỹ thuật mô hình hóa có thể phát hiện các điểm bất thường hoặc các mẫu. Những phân tích này là những phần quan trọng của các mô hình dự báo.
Phân tích mô tả và dự đoán chỉ là một phần công việc của các nhà khoa học dữ liệu. Một số nhà khoa học dữ liệu có thể làm việc trong lĩnh vực học sâu, thực hiện các thí nghiệm lặp đi lặp lại để giải quyết một vấn đề dữ liệu phức tạp bằng cách sử dụng các thuật toán tùy chỉnh.
Bằng chứng giai thoại cho thấy rằng hầu hết công việc trong một dự án khoa học dữ liệu được dành cho việc xử lý dữ liệu và kỹ thuật tính năng. Các nhà khoa học dữ liệu có thể tăng tốc quá trình thử nghiệm khi các kỹ sư dữ liệu sử dụng kỹ năng của họ để xử lý dữ liệu thành công.
Nhìn bề ngoài, có vẻ như công việc của một nhà khoa học dữ liệu và nhà phân tích dữ liệu khác xa nhau, nhưng phỏng đoán này là sai sự thật. Một nhà khoa học dữ liệu xem xét dữ liệu để xác định các câu hỏi cần câu trả lời và thường sẽ đưa ra giả thuyết hoặc thử nghiệm, sau đó chuyển sang nhà phân tích dữ liệu để hỗ trợ trực quan hóa dữ liệu và báo cáo.
4. Quản trị viên cơ sở dữ liệu – Database administrator
Quản trị viên cơ sở dữ liệu triển khai và quản lý các khía cạnh hoạt động của các giải pháp nền tảng dữ liệu kết hợp và gốc đám mây được xây dựng trên các dịch vụ dữ liệu Microsoft Azure và Microsoft SQL Server. Người quản trị dữ liệu chịu trách nhiệm về tính khả dụng tổng thể, hiệu suất nhất quán và tối ưu hóa của các giải pháp cơ sở dữ liệu. Họ làm việc với các bên liên quan để xác định và thực hiện các chính sách, công cụ và quy trình cho các kế hoạch sao lưu và phục hồi dữ liệu.
Vai trò của quản trị viên cơ sở dữ liệu khác với vai trò của kỹ sư dữ liệu. Quản trị viên cơ sở dữ liệu giám sát và quản lý tình trạng tổng thể của cơ sở dữ liệu và phần cứng mà nó nằm trên đó, trong khi kỹ sư dữ liệu tham gia vào quá trình xử lý dữ liệu, nói cách khác, nhập, chuyển đổi, xác thực và làm sạch dữ liệu để đáp ứng nhu cầu kinh doanh và các yêu cầu khác.
5. Nhà phân tích kinh doanh – Business analyst
Mặc dù có một số điểm tương đồng tồn tại giữa một nhà phân tích dữ liệu và nhà phân tích kinh doanh, điểm khác biệt chính giữa hai vai trò là những gì họ làm với dữ liệu. Một nhà phân tích kinh doanh gần gũi hơn với doanh nghiệp và là một chuyên gia giải thích dữ liệu có được từ hình ảnh hóa. Thông thường, vai trò của nhà phân tích dữ liệu và nhà phân tích kinh doanh có thể là trách nhiệm của một người duy nhất.
UniTrain lược dịch từ bài viết của Microsoft
Xem thêm